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AN EXPERIMENTAL AND THEORETICAL INVESTIGATION OF THE 

PRESSURE DISTRIBUTION AND FLOW FIELDS 0F.BLUNTED 

CONES AT HYPERSONIC MACH NUMBERS 

By Joseph W. Cleary 
Ames Research Center 

SUMMARY 

An experimental and theoretical investigation of the flow of a perfect 
gas over spherically blunted cones has been conducted at hypersonic Mach num- 
bers. Numerical solutions for inviscid flow at zero angle of attack are pre- 
sented and analyzed to show the effect of cone angle on surface-pressure 
distribution for Mach numbers of 10 and M 

and 1.667. 
half-angle blunted cone are given at several axial stations. 

and specific-heat ratios of 1.4 
Profiles of the inviscid shock-layer flow properties for a 15' 

Experimental longitudinal and circumferential pressure distributions for 
15' and 30° half-angle blunted cones with bluntness ratios of 6 and 5.45, 
respectively, were obtained from wind-tunnel tests in air. The pitot-pressure 
distribution was measured in the shock layer of a 15' blunted cone at angle of 
attack. Pitot traverses were made at two axial stations to show the thinning 
of the entropy layer. 

At 0' angle of attack, the experimental pressure distributions and pitot 
traverses of the shock layer compare favorably with the inviscid numerical 
theory but some viscous effects were observed. Theory and experiment both 
demonstrate the existence of a high total-pressure layer enclosing the low 
total-pressure layer adjacent to surfaces of blunted cones. The high total- 
pressure layer is a result of an inflection of the shock that is a character- 
istic of the three-dimensionality of flow over blunted cones. For windward 
surfaces, increasing angle of attack brings the high total-pressure layer in 
close proximity to the cone surface; this may influence transition of the 
boundary layer. 

INTRODUCTION 

Comparative studies of convective and radiative heating during entry at 
speeds greater than parabolic speed were made in reference 1 to determine how 
to minimize aerodynamic heating of sharp conical bodies. The advantage of 
preserving laminar flow throughout the entry was demonstrated. Previous 
research (refs. 2 and 3, f o r  example) has shown that a s m a l l  amount of blunt- 
ness is conducive to delaying boundary-layer transition. Blunted cones merit 
further study both because some blunting of the tip due to extreme heating 
appears unavoidable and because blunting has favorable effects on transition. 
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Blunting alters the flow so that properties of the shock layer are 
influenced many nose radii downstream. The fluid passing through the strong 
shock part of the curved bow wave undergoes a significant reduction of total 
pressure and forms a low-density, high-entropy layer that, for conical shapes, 
diminishes in thickness with increasing axial distance from the nose. Near 
the nose, the distribution of flow properties in the shock layer is similar to 
that predicted by blast-wave theory while, many nose radii downstream, the 
distribution is essentially conical except for the thin entropy layer. As the 
entropy layer thins with increasing axial distance, the surface pressure 
expands below, and then approaches, asymptotically, the sharp-cone pressure. 
This overexpansion of the flow is highly dependent on cone angle. These 
effects of bluntness may have an important bearing on control effectiveness, 
flow separation, heat transfer, and type of boundary layer. 

The foregoing effects of bluntness can be predicted qualitatively by 
analytical studies of axisymmetric blunted-cone flows (see refs. 2 to 9, for 
example). However, these analytical methods do not predict all aspects of the 
flow over a specified blunted cone. For example, experiment has shown that 
for a range of cone angles, blunted-cone flows have an inflection in the shock 
that does not appear amenable to simplified analytical treatment. 
other hand, the numerical method of characteristics gives the true shock shape 
and a11 other features of the inviscid flow accurately. Since numerical 
methods for blunted axisymmetric bodies are restricted, at present, to a 
limited range of angles of attack (ref. lo), it is generally necessary to 
resort to experimental methods at large angles of attack. 

On the 

The purpose of the present investigation is to study theoretically and 
experimentally the flow field over blunted cones. 
sented for zero angle of attack to show the effects of cone angle, specific- 
heat ratio, and Mach number on surface-pressure distribution and pressure 
drag. Also shown are profiles of shock-layer properties for a l 5 O  half-angle 
blunted cone. Experimental results are presented to show the effect of angle 
of attack on the longitudinal and circumferential pressure distribution for 
l 5 O  and 30' half-angle blunted cones at Mach numbers of 5.25, 7.4, and 10.6. 
Also shown are experimental pitot traverses of the shock layer at two stations 
for a Mach number of 10.6 that demonstrate the thinning of the entropy layer 
and how it is affected by angle of attack. Numerical and experimental results 
are compared to illustrate viscous effects and to verify the main features of 
the numerical solutions. 

Numerical results are pre- 

SYMBOLS 

A area 

Ab cone base area 

drag CD drag coefficient, - 
q,Ab 

2 

ds shock standoff distance 

2 length of cone 



Mach number x, r 

s t a t i c  pressure  

t o t a l  p ressure  

dynamic pressure ,  2 pV2 

nose r ad ius  

gas constant  

Reynolds number, per  f o o t  

X '  

a 

Y 

6 

-I 

1 

wind-axis c y l i n d r i c a l  
coordinates  

body-axis coordinate  

angle  of a t t a c k  

r a t i o  of s p e c i f i c  hea t s  

cone ha l f -  angle  

coordinate  normal t o  body 
su r face  

rad ius  of curvature  of shock e shock angle  
f o r  r = 0 

5 body su r face  coordinate  from 
entropy the  nose 

t o t a l  temperature P dens i ty  

v e l o c i t y  components i n  the  CP c i rcumferent ia l  angle  i n  body 
x, r d i r e c t i o n s  c y l i n d r i c a l  coordinate  system 

v e l o c i t y  

b base 

c cone sur face  

min minimum value 

P p i t o t  

w su r face  i n c l i n a t i o n  t o  free- 
stream v e l o c i t y  

Subscr ip ts  

S shock 

s t a g  s t agna t ion  po in t  on body 

co f r e e  s t ream 

2 immediately behind shock 

Superscr ip ts  

c o r r e l a t i o n  parameters (eqs .  (10) and (11)) 

along s t reaml ine  of maximum t o t a l  p ressure  

NUMERICAL METHOD 

Solu t ions  of t he  flow over b lunted  cones were obta ined  by numerically 
so lv ing  t h e  complete i n v i s c i d  equat ions of a p e r f e c t  gas .  The computations 
were performed on an IBM 7090 computer by e s s e n t i a l l y  t h e  same method as t h a t  
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of reference 11. The same method was used to study blunted-wedge flows in 
reference 12. The procedure consists of two parts: 
solution of the subsonic and transonic flow over the blunted nose is used to 
provide properties of the flow beyond the sonic line, and (2) from these 
supersonic inputs along a line from the body to the shock, the solution is 
continued downstream by the axisymmetric method of characteristics. 

(1) An inverse numerical 

Sketch (a) 

Sketch (a) 

illustrates the main features of the method. Twelve inputs were used from the 
body to the shock to start the characteristics net since this number was found 
sufficient to provide accurate solutions. A quadratic interpolation of entropy 
was used in the numerical calculation of the characteristics net to obtain 
accurate profiles of the flow properties within the shock layer. In mostcases, 
solutions were achieved over an axial distance of about 60 nose radii. Solu- 
tions were computed for cone angle increments of 5' from a cone angle of 00 to 
the maximum possible before the flow became locally subsonic, thereby invali- 
dating the method of characteristics. Solutions were computed for specific- 
heat ratios of 1.4 and 1.667 and Mach numbers of 10 and co (actual 
Corresponding solutions for blunted wedges are given in reference 12. 

.I&,=lO,OOO). 

EXPERIMENTAL METHOD 

Wind-Tunnel Facility 

The tests were conducted in air in the Ames 3.5-Foot Hypersonic Wind 
Tunnel. The tunnel circuit is shown schematically in figure 1. High-pressure 
air is heated in the pebble-bed heater and flows through the misymmetric test 
section to the vacuum spheres. The nozzle and test section are cooled by 
helium which is introduced through an annular slot in the nozzle at the 
subsonic entrance. 
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The model support system is hydraulically actuated and servo-controlled 
over an angle-of-attack range of -5O to +l5'. 
tunnel is automatic, and the model attitude sequence and the tunnel total 
pressure are programed into a controller prior to a run. Data are recorded 
on magnetic tape. For the test results presented herein, the total tempera- 
ture was 2000' Rankine, and the Mach number and the free-stream Reynolds 
number per foot were 

The operation of the wind 

Re* 
M 

M 

5-25 1. 4x106 

7.4 

53 

3. %lo6 (3. 7x106 for shadowgraphs) 
10.6 1. m106 

Although the total temperature of the air was sufficient to partially excite 
the vibrational mode of the molecules, the experimental results can be con- 
sidered essentially those of a perfect gas with y = 1.4. 

Models and Test Procedure 

The models were constructed from stainless steel and had a wall thickness 
of about 0.38 inch. 
ments and for pitot traverses of the shock layer. The pressure models were 
blunted cones of 15' and 30' half angles. 
and the position of pressure orifices are given in figure 2, and the models 
are shown mounted on the sting support in figures 3(a) and 3(bb. Each model 
had three rows of pressure orifices installed at cp 
Pressure distributions for other values of cp were obtained by rotating the 
model and repeating the run. Measurements of pressure distribution were made 
at Mach numbers of 5.25, 7.4, and 10.6. 

Separate models were built for surface pressure measure- 

Geometrical details of these models 

of Oo, 90 , and 180'. 

Pitot traverses were made only on a 15' half-angle blunted cone. This 
model was instrumented with movable pitot probes mounted on the top (cp = 0') 
at station 
as shown in figure 3(c). Data for other values of cp were obtained by rotat- 
ing the model. 
mounted electric motor, and their positions were measured with a potentiometer. 
It is believed from visual surface flow studies, that the data obtained with 
the rear probe are essentially free of interference from the forward probe. 
Slight local interference due to interaction of the probe bow shock with the 
adjacent boundary layer may have occurred when the probe was near the surface. 
However, this effect on the pitot-pressure measurements is believed unimpor- 
tant. The probes were alined with the surface of the model and were, there- 
fore, subject to some misalinement with the flow during the traverse. This 
misalinement was greatest for those traverses at angle of attack and not in 
the pitch plane. However, estimates from numerical solutions using first- 
order theory (ref. 10) indicate that the crossflow angies to the probes were 
less than 10'. 
ments of pitot pressure. 

x'/R = 3.59 and on the bottom (cp = 180~) at station x'/R = 16.67 

The 0.040-inch-diameter probes were actuated by an internally 

This is believed within a range suitable for accurate measure- 
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Both the pressure distribution and pitot-traverse models were internally 
cooled and because the runs were about two minutes long, surface temperatures 
were well below the adiabatic wall temperature during the entire run. 
Surface- and pitot-pressure measurements were made at the beginning and end of 
each run to evaluate the effect of varying heat transfer; no significant 
effects were observed. 

Although the models had a polished surface at the beginning of the tests, 

This abrasion was greatest at Mach numbers of 5.25 and 7.4 
some abrasion of the surface occurred during the tests due to dust from the 
pebble-bed heater. 
and least at a Mach number of 10.6. 
indication of the model surface condition at the termination of the test. 
Before each run the model was restored to a comparatively smooth finish. 

The photographs of figure 3 give some 

Precision 

Random errors existed not only in reading and recording the pressure data 
but also in determining free-stream Mach number due to slight variations in 
total pressure and total temperature with time. Because there are also sys- 
tematic errors in determining Mach number, a brief analysis of the effect of 
an error in Mach number on the precision of pressure coefficient was made. 
This analysis indicated that at a Mach number of 10, an error of 1 percent in 
determining Mach number caused an error of about 5 percent in pressure coeffi- 
cient. On this basis and since the pressure cells have a precision of about 
1 percent at the lowest pressures measured, it is believed the precision of 
pressure coefficients is about +2 to +4 percent. Angle measurements are 
accurate within +0.lo, and probe heights are accurate within k0.02 inch. 

NUMl3RICAL RESULTS FOR ZERO ANGLE OF ATTACK 

A detailed study of properties at the surface and within the shock layer 
is essential for determining the main characteristics of the flow over blunted 
cones. Both surface and shock-layer properties are obtained from the numeri- 
cal solutions, and the effects of varying cone angle, Mach number, and 
specific-heat ratio on the flow will now be considered. The surface-pressure 
distribution for the spherical nose and blunted cone and the integrated pres- 
sure drag will be considered initially for a wide range of cone angles. While 
blunted-cone flows are highly dependent on cone angle, for simplicity, shock- 
layer properties for on ly  one representative cone angle of lL5O will be given. 
It is believed that the interrelationship between surface and shock-layer 
properties will be indicative of the effects of cone angle on shock-layer 
properties for other cone angles. Finally, the total-pressure gradient at the 
surface will be examined, and an approximate correlation will be obtained. 

Surface-Pressure Distribution 

Hemispherical nose.- The effect of specific-heat ratio on the pressure 
distribution for a hemispherical nose is presented in figure 4 for Mach 



numbers of 10 and 00. The effect of specific-heat ratio on the forward part of 
the nose, x/R < 0.4, has been considered previously in reference 13; therefore, 
only the effect on the afterpart, x/R > 0.4, is of interest here. 
tion for 
with the centrifugal force correction. 
be achieved under these conditions.) 
heat ratio has a small effect on pressure coefficient for the range 1.4 < y 
< 1.667, but pressure coefficient decreases significantly as y + 1. These 
effects and the almost negligible effect of Mach number for the range from10 
to 00 are similar to those of plane flow shown in reference 12. The plane- 
flow pressure distribution for y = 1.4 is shown here for comparison with that 
of the hemispherical nose. It can be observed from figure 4 that the pressure 
coefficient for 
flow. It is apparent that any simple procedure for estimating this pressure 
coefficient (such as matching pressure gradients of Newtonian and Prandtl- 
Meyer flows, ref. 14) that does not account for differences between plane and 
axisymmetric flows may give only approximate results. 
demonstrated later when comparisons are made with experimental data. 

The solu- 
% = 00 

and y = 1 of figure 4(b) is the Newton-Busemann solution 
(A characteristics solution could not 

Figure 4 shows that increasing specific- 

X/R = 1 is twice as great for plane flow as for axisymmetric 

This point will be 

Blunted cone.- The effects of cone angle and Mach number on the pressure 
distribution of blunted cones are presented in figures 5 and 6 for specific- 
heat ratios of 1.4 and 1.667, respectively. 
below sharp-cone values for the larger cone angles of figures 5 and 6 was 
followed by a small oscillating overshoot and then an asymptotic return to 
sharp-cone values with increasing x/R. For shallow cone angles, the trends 
of the pressure distribution were similar to that for large cone angles but 
the oscillating overshoot occurred beyond the range of 
ures 5 and 6. 
point aft, the effect is generally small for the range of Mach numbers shown. 
A close examination of figures 5 and 6 shows that increasing Mach number 
increased the minimum pressure coefficient of shallow cones but decreased the 
minimum of the steeper cones. 

The overexpansion of the pressure 

x/R shown in fig- 
Although increasing Mach number moved the minimum pressure 

As cone angle w a s  increased, the tangent point approached the sonic line, 
and the numerical method of characteristics could not be used beyond the cone 
angle corresponding to sonic flow on the cone surface. Nevertheless, by an 
extrapolation of the pressure distributions of figures 5 and 6, speculations 
about the nature of the sonic lines of these flows can be made. A discussion 
of these flows is given in reference 15.  

Pressure Drag 

The pressure-drag coefficients of blunted cones have been obtained by 
graphically integrating the pressure distributions shown in figures 5 and 6. 
The results are presented in figures 7 and 8 for specific-heat ratios of 1.4 
and 1.667, respectively, to show the effects of cone length and Mach number. 
A base pressure coefficient of 0 was assumed. The drag-coefficient curve of 
the sharp cone is a l s o  shown, and it envelops the blunted-cone curves. To the 
accuracy of these results, the inviscid drag coefficient of blunted cones is 
always greater than that of the sharp cone of the same angle when based on 
base area. This result is at variance with the theory of reference 9 where as 
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much as 10-percent reduction in drag coefficient is indicated by blunting 
sharp cones. It is believed the theory of reference 9 may overestimate the 
overexpansion phenomenon for these cases and result in the lower drag calcula- 
tions. It is of interest that drag measurements at low supersonic Mach num- 
bers for spherically blunted cones in reference 16 show total drag (viscous 
and pressure) greater than that of a sharp cone. 
necessarily pertinent at hypersonic Mach nu~ers, they do indicate that blunt- 
ing does not reduce drag. 

While these results are not 

Interrelationship Between Surface and Shock-Layer Properties 

Before proceeding with a detailed study of the shock-layer profiles on 
blunted cones, it is helpful to examine the interrelationship between shock 
shapes, surface-pressure distribution, and total-pressure profiles. These 
properties are shown in figure 9 for several free-stream conditions and for a 
blunted wedge and cone with a half-angle of 15'. 
wedges were previously given in reference 12. The total-pressure profiles 
show relative values along a normal from the body to the shock at axial sta- 
tions It is apparent at the outset that overexpansion of 
surface pressure and inflection of the shock are three-dimensional phenomena. 
The overexpansion of pressure on blunted cones is similar to the isentropic 
compression in the shock layer of sharp cones in that both phenomena are 
uniquely due to three-dimensionality of the flow. Since the momentum and 
energy equations are identical for plane and axisymmetric flows, an account of 
the differences observed must lie in the equation of continuity. For this 
reason, it is instructive to examine the continuity equations of these flows 
in more detail. The continuity equations are 

The solutions for blunted 

x/R = 5 and 20. 

'(p') + + = 0 axisymmetric flow ax ar r 

Equation (1) is obviously satisfied for sharp-wedge flows since p, u, 
and v are constants. However, for the case of blunted-wedge flows, the dis- 
tinguishing feature is that near the nose between the body and the shock 
a(pv)/ar = -a(pu)/ax > 0. Moreover, for that region of the flow where blast- 
wave effects are significant, the derivatives are comparatively large absolute 
numbers. Outside the entropy layer at a large distance from the nose these 
derivatives vanish, of course, and sharp-wedge theory is applicable. For 
axisymmetric flows, the term pv/r has a modifying effect (see eq. (2)). 
Also, it can be demonstrated from solutions of sharp cones that a(pv)/ar 
always negative and a(pu)/ax is positive and small. Near the nose of 
blunted cones, however, where blast-wave effects are significant, a(pv)/ar 
a large positive number and, to satisfy continuity, it is essential that 
a(pu)/ax be negatively large. At some distance downstream of the blunted 
nose, it is evident that a(pv)/ar must undergo a change in sign. Therefore, 
there is a curve along which 

is 

is 
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Numerical solutions of blunted-cone flows indicate this curve occurs near, but 
just downstream, of the maximum total-pressure streamline. However, the 
possibility of integrating the equations of motion for this condition and thus 
establishing an analytical upper boundary on the maximum total-pressure 
streamline appears remote. 

Properties of the Flow in the Shock Layer 

Some of the general aspects of the three-dimensional nature of blunted- 
cone flows have been considered. To continue the study of the numerical 
solutions, it is worthwhile to explore some of the details of the entropy and 
shock layer. These details are most vividLy portrayed by several traverses of 
the flow normal to the cone surface which show the effect of increasing x/R 
on the thinning of the entropy layer. Typical of a wide range of blunted-cone 
flows are the traverses of the shock layer for a l 5 O  blunted cone which will 
now be considered. 

Profiles of shock-layer . properties.- Static and total pressure, Mach 
number, density, v&locity, and dynamic-pressure profiles are presented in 
figures 10 and 11 f o r  specific-heat ratios of 1.4 and 1.667, respectively. 
Sharp-cone values are also shown and are based on the same distance from the 
surface to the shock of the blunted cone at 
illustrate the asymptotic return to conical flow at a large axial distance 
from the nose. 
intersects the shock at about where the shock-wave slope is a minimum. 

x/R = 60. The sharp-cone values 

Coincidentally, for this cone angle, the traverse at x/R = 10 

From the several profiles of flow properties shown in figures 10 and 11, 
it can be observed that static pressure is most nearly in agreement with 
sharp-cone values for large x/R. 
to display the largest differences from sharp-cone values, and it is of inter- 
est to note the effects of Mach number and specific-heat ratio on these 
differences. The ratios of blunted-cone maximum total pressure to that of the 
sharp cone for 
respectively, while for 
1.96. 
by increasing Mach number but decreased by increasing specific-heat ratio from 
1.4 to 1.667. 
shock inflection vanishes for M, -, co and y + 1, apparently a maximum value of 
this total-pressure ratio exists between 
mum shock angle is essential for estimating the maximum total pressure of 
blunted-cone flows, values and coordinates of this minimum are given in 
figure 12. 

On the other hand, total pressure appears 

y = 1.4 is about 1.50 and 3.00 for Mach numbers of 10 and 00, 

y = 1.667, the corresponding values are 1.34 and 
It is evident that the total-pressure ratio is significantly increased 

Since it can be argued on a Newtonian theory basis that the 

y = 1 and 1.667. Because the mini- 

Effective Reynolds number.- Figures 10(b) and ll(b) show that the thick- 
ness of the low total-pressure layer and the enveloping high total-pressure 
layer decreased inversely with x/R. Although increasing Mach number thinned 
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these layers, increasing the specific-heat ratio from 1.4 to 1.667 thickened 
them. It is reasonable to expect the high total-pressure layer may have an 
adverse effect on the local convective heat transfer to blunted cones after 
the total-pressure layer has become very thin. Under this condition, the 
high total-pressure layer would approach the edge of the boundary layer, and 
because of its greater kinetic energy, it would increase the shear at the wall 
by jet-like viscous interaction. Furthermore, the high total-pressure layer 
may cause earlier transition of the boundary layer from laminar to turbulent 
flow by increasing the effective Reynolds number at the boundary-layer edge. 
To estimate the effective Reynolds number, the ratio of Reynolds number per 
foot along the streamline of maximum total pressure to that of the streamline 
along the cone surface, Ee*/Rez 
using Sutherland’s viscosity law and a total temperature of 2000’ Rankine. 
should be noted that the unit Reynolds number on the maximum total-pressure 
streamline is about the maximum for all streamlines within the shock layer. 
The results of computations showing the effects of Mach number are given in 
figure 13 for cone angles of 15’ and 30’ and It is evident from 
figure 1-3 that the effective Reynolds number can be significantly increased by 
boundary-layer growth into the high total-pressure region. While the infinite 
Mach number curves shown in figure 13 represent a fictitious condition, a 
large effect of free-stream Mach number is indicated for a cone angle of l 5 O .  

was computed from the inviscid solutions by 
It 

y = 1.4. 

Surface Total-Pressure Gradient 

The total-pressure gradient normal to the surface of blunted cones is of 
fundamental importance to studies of entropy and shock Layers. Although these 
gradients may be obtained from the numerical solutions, in practice, accurate 
evaluations may be difficult unless the characteristic net has a sufficiently 
fine mesh. Because of this difficulty and since total-pressure gradients can 
be computed analytically, it is worthwhile to examine the analytical method 
and then compare its results with some appropriate values computed from the 
numerical solutions. 

Analytical method.- A derivation of the total-pressure gradient at the 
surface of blunted bodies is given in appendix A by a one-dimensional analysis 
of the surface stream tube. There it is shown that the dimensionless surface 
total-pressure gradient is given by 

where 
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Subsequent t o  the  ana lys i s  given here ,  it w a s  found t h a t  a so lu t ion  f o r  
sur face  entropy gradien t  had been previous ly  given i n  re ference  1-7 by a some- 
what d i f f e r e n t  approach. It can be demonstrated, by transforming from entropy 
t o  to t a l -p re s su re  grad ien t ,  that t h e  results of re ference  17 are t h e  same as 
equation (4 )  . 

It i s  evident  from equat ion (4 )  t h a t  t h e  to t a l -p re s su re  g rad ien t  depends 
on l o c a l  Mach number and body rad ius ,  and t h e  r ad ius  of curvature  of t h e  shock 
a t  the  axis of symmetry. While l o c a l  Mach number and shock rad ius  of curva- 
t u r e  can be est imated by simple theo r i e s  and co r re l a t ions ,  they  are given 
accu ra t e ly  by the numerical so lu t ions .  Therefore,  t o  p re sen t  t h e  most accu- 
rate values of t o t a l - p r e s s u r e  g rad ien t s ,  computations were made with equat ion 
(4 )  using values of l o c a l  Mach number and shock r ad ius  of curvature  from t h e  
numerical so lu t ions .  A l s o ,  the r a t i o  of l o c a l  body r ad ius  t o  nose rad ius ,  
r / R ,  w a s  computed f o r  var ious cone angles and i n  terms of t h e  axial coordinate,  
x /R,  by equation ( 6 ) .  

r x  1 - s i n  6 - = - t a n  6 + 
R R  cos 6 

The r e s u l t s  a r e  presented  i n  f i g u r e s  14 and 1 5  f o r  spec i f i c -hea t  r a t i o s  
A l s o  of 1 . 4  and 1.667, r e spec t ive ly ,  i n  terms of t he  a x i a l  coordinate ,  x/R. 

shown a r e  values of t o t a l -p re s su re  grad ien t  computed from the  numerical so lu-  
t i ons  assuming a l i n e a r  v a r i a t i o n  of t o t a l  p ressure  from the  sur face  t o  t h e  
neares t  po in t  i n  the  flow f i e l d .  
show good agreement of t h e  numerical so lu t ions  w i t h  t he  a n a l y t i c a l  method. 
Differences are be l ieved  due t o  inaccurac ies  i n  the  assumption of a l i n e a r  
t o t a l -p re s su re  v a r i a t i o n  when computing the  numerical va lues .  This i s  h igh ly  
dependent on cone angle  and precludes present ing  extensive r e s u l t s  f o r  cones 
of l a r g e  angles .  

For shallow cone angles ,  f i g u r e s  14 and 1 5  

Approximate method and c o r r e l a t i o n s . -  Est imat ing to t a l -p re s su re  g rad ien t s  
e x p e d i e n t l y u s i n g  equat ion ( 4 )  r equ i r e s  o ther  methods than numerical so lu t ions  
t o  eva lua te  M and R/Rs. One p o s s i b i l i t y  t h a t  w i l l  be considered i s  t o  e s t i -  
mate M and R/Rs 
d i s t r i b u t i o n .  An accura te  c o r r e l a t i o n  of R/Rs from numerical so lu t ions  has 
been achieved i n  re ference  18 from which 

from a v a i l a b l e  co r re l a t ions  and approximations of pressure  

R -  1.28 

1 + 
RS 
- -  

where 

( 7 )  

i s  the dens i ty  r a t i o  across  a normal shock. Local Mach number may be 
evaluated by 

11 
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if the distribution of pressure coefficient is known, and it is assumed that 
the flow has expanded isentropically after crossing a normal shock. 
tribution can be estimated from references 8 and 9, for example, or deter- 
mined experimentally. 
is to neglect the overexpansion and assume the pressure distribution is the 
same as that of sharp-cone theory. 
computations were made for a wide range of cone angles and values of 
using equations (7) and (9) with sharp-cone values of pressure coefficient. 
The results are presented in figure 16 in terms of the correlation parameters 

This dis- 

A more approximate method that will be considered here 

To test the adequacy of this assumption, 
r/R 

r- 
and 

The values of used in correlating equation (10) were com- 
-q=0 

puted from equation (4) with numerical solutions for 
deviations from the straight line of perfect correlation of figure 16 is a 
reflection primarily of inaccuracies in estimating M by using sharp-cone 
pressure. For shallow cone angles and small values of F comparatively large 
deviations from perfect correlation are shown in figure 16. On the other hand 
for large values of r 

R/Rs and M; therefore, 

- 
the approximate method gives accurate results. 

12 
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DISCUSSION OF EXPERIMENTAL RESULTS FOR ANGLX OF ATTACK 

The experimental data presented are surface-pressure distributions, pitot 
traverses of the shock layer, and shadowgraphs of the flow. Since theory can- 
not adequately predict the effects of large angles of attack, emphasis will be 
mainly on these effects. 

Surface-Pressure Distribution 

Surface-pressure distributions for the 15' blunted-cone model are 
presented in figures 17, 18, and 19 for Mach numbers 5.25, 7.4, and 10.6, 
respectively. In a similar manner, pressure data are given in figures 20, 21, 
and 22 for the 30° blunted-cone model. Although anomalous scatter exists in 
some of the data, the effects of a and cp are, in general, consistent for all 
Mach numbers. Ila, = 10.6 appear to have the least scatter and 
for this reason are perhaps the most reliable. At small angles of attack, the 
drop-off in the pressure distribution near the base of the 30' blunted-cone 
model (see figs. 20, 21, and 22) is believed due to thinning of the boundary 
layer by the strong expansion at the base. However, at large angles of 

The data for 

attack, the flow may be locally subsonic on windward surfaces, 
a l s o  be a factor. 

The overexpansion of pressure below the sharp-cone value, 
the characteristic solutions for a = 0 (fig. 5), is borne out 
mental data. For surfaces whose inclination to free stream is 
varying a and c p ) ,  the minimum pressure point moves toward the 

and this may 

as predicted by 
by the experi- 
increased (by 
nose while the 

opposite is true if the surface inclination is decreased. To aid in inter- 
preting these effects, the inclinations of conical surface elements to the 
free stream have been computed by equation (12) and are given in table I. 
geometrical relationship of the angles pertinent to these computations are 
shown in sketch (b) 

The 

sin w = sin 6 cos a - cos 6 coscp sin a 

(12) 
When the surface element is alined 
with the free stream as shown in fig- 
ure l9(a), for example, with a = 15O 
and cp = Oo, the pressure distribution 
is of blast-wave type. On the other 
hand, for surface elements whose 
inclination is greatest (fig. Ig(g) 
with a = 15O, cp = 180°), the minimum 
pressure is followed by a compression 
that significantly overshoots the E n d  

asymptotic level. This overshoot is greater than the slight overshoot of the 
characteristic solution having the same inclination of the surface (see 
fig. 5(a), 6 = 30'). Because of the extremely thin boundary layer, it is 
unlikely that the overshoot and the saddle-type pressure distribution along 
the most windward rays is a viscous effect. More likely, the entropy layer is 

Sketch (b) 



thinned more rapidly (by the circumferential pressure gradient) than that 
which occurs for the equivalent cone at 
the overshoot. 

a = Oo, causing a magnification of 

At cp = goo, pressure data are given only for 
clarity; pressures at intermediate angles of attack can be estimated by linear 
interpolation. For the 15' model the pressure distribution along this ray 
appears insensitive to increasing angle of attack, but a small decrease in 
pressure can be observed on the 30° model. 
the larger decrease of inclination of the 90° ray of the 30' model as angle of 
attack was increased (see table I). 

a of 0' and 15' for 

These effects are consistent with 

Pitot Traverses of the Shock Layer 

Pitot traverses of the shock layer were made at stations x'/R = 3.59 and 
16.67 of the 15' blunted-cone model to investigate the effects of angle of 
attack on the entropy and boundary layers. The results are presented in fig- 
ure 23 for 
tion, the data obtained for 
model horizontal plane of symmetry as if obtained for The traverses 
were made normal to the model surface and except on leeward surfaces for high 
angles of attack, the shock was penetrated as shown by the abrupt change in 
pitot-pressure coefficient to the free-stream value of about 1.83. 
tions have been applied to the pitot measurements for the effect of vorticity 
on the effective pitot position or for pitot misalinement to the local flow. 
The former correction was small and unimportant for this investigation, while 
the latter correction could not be made since the local stream direction was 
unknown. However, for stream-angle deviations less than about l5', the cor- 
rection for pitot misalinement should be unimportant. (The effect of stream 
misalinement is to measure pitot pressures less than true values.) Also 
shown in figure 23 are the maximum possible theoretical values of pitot- 
pressure coefficient that can be attained in sharp-wedge and axismetric con- 
ical flows. These maximums occur for wedge and cone angles of about 21.2' and 
23.5', respectively. 
is exceeded by about10 percent for 
x'/R = 16.67 (see fig. 23(b)). 
processes occurring in blunted-cone flows when at angle of attack, the maximum 
pitot-pressure coefficient is only slightly greater than the maximum conical- 
flow value. 

M, = 10.6 and R: = 1.0X106. In order to simplify the presenta- 

a < 0'. 
cp > 90' and a > 0' are shown reflected in the 

No correc- 

The maximum possible conical pitot-pressure coefficient 
a = -5' and cp = 30' at station 

It is interesting that for the many possible 

Interpretation of pitot traverses.- Without knowledge of local static 
pressure or Mach number, measurements of pitot pressure require careful inter- 
pretation. Nevertheless, if the static-pressure variations across the shock 
layer are assumed to be small, some observations of the nature of the flow can 
be made. On this basis, an examination of the data indicates it is possible 
to classify most of the traverses into two rather broad categories. Those 
traverses for which pitot pressure is a maximum at the shock are classified as 
of blast-wave type having thick entropy layers. On the other hand, those for 
which pitot pressure is a maximum within the shock layer are classified as of 
blunted-cone type, occurring after the inflection in the shock where some thin- 
ning of the entropy layer has occurred. Depending on a and cp,  both types of 
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d i s t r i b u t i o n s  of p i t o t  p re s su re  were observed a t  
shown i n  f i g u r e  23. It can be observed t h a t  f o r  
f o r  all c i rcumferent ia l  angles ,  t h e  t r ave r ses  a t  

3 
I t h e  f o r e  and a f t  s t a t i o n s  as 

p o s i t i v e  angles  of a t t a c k  and 
s t a t i o n  x'/R = 3.59 can be 

approximately c o r r e l a t e d  by normalizing t h e  o rd ina te  by t h e  d i s t ance  t o  t h e  
shock. T h i s  self-similar proper ty  i s  fundamental t o  blast-wave theory and 
ind ica t e s  t h a t  crossflow e f f e c t s  a r e  small, and t h e  flow i s  mainly dominated 
by nose bluntness .  On t h e  o ther  hand, a t  s t a t i o n  x'/R = 16.67, t h e  flow i s  
of blast-wave type only  f o r  a l i m i t e d  range of 
and cp 5 30°). 
l a y e r  w a s  s u f f i c i e n t l y  thinned by the  c i rcumferent ia l  p ressure  grad ien t  t h a t  
the  s t reaml ine  of m a x i m u m  t o t a l  p ressure  l i e s  c lose  t o  the model sur face .  For 
negat ive angles  of a t t a c k ,  t h e  entropy l a y e r  grows i n  thickness  with inc reas -  
i ng  cp, and i f  allowance i s  made f o r  o r i e n t a t i o n  of cp and a, i t  i s  easy t o  
v i s u a l i z e  from f i g u r e  23 t h e  r a p i d  growth i n  thickness  as the  leeward su r face  
i s  approached. 

a and cp (approximately a > 10' 
For t h i s  s t a t i o n  a t  negat ive angles  of a t t ack ,  t h e  entropy- 

A t  low angles  of a t t a c k  on windward sur faces  the boundary l a y e r  w a s  
b a r e l y  d i sce rn ib l e  s ince  i t  w a s  only of t h e  order  of 1 or 2 probe diameters i n  
thickness  a t  t h e  a f t  s t a t i o n  ( s e e  f i g .  23) .  For leeward sur faces  (a > 5 O  and 
cp < 30') t he  boundary l a y e r  w a s  s u f f i c i e n t l y  thickened by the  circumf&ential  
f l o w  tha t  a d e f i n i t e  p r o f i l e  w a s  measured. Increas ing  angle of a t t a c k  caused 
s i g n i f i c a n t  thickening of t he  boundary l a y e r ,  s i m i l a r  t o  the  e f f e c t  on t h e  
entropy l a y e r .  

E f f e c t  of Angle of Attack on Boundary-Layer Trans i t i on  

The e f f e c t  of varying angle  of a t t a c k  on t h e  flow over the  15' b lun ted -  
cone model a t  
of f i g u r e  24. 
t u r e s  of the model a t  d i f f e r e n t  tunnel  s t a t i o n s  were made, and the  shadow- 
graphs of f i g u r e  21  a r e  composites made from d i f f e r e n t  runs.  The sequence of 
shadowgraphs from t h e  top  t o  the  bottom of f i g u r e  24 shows the  e f f e c t  of 
increas ing  sur face  i n c l i n a t i o n  on the  flow over the  top  sur face  of t h e  model. 
The r e s u l t s  show t h a t  f o r  w = 15 , f u l l y  developed tu rbu len t  flow, as i n d i -  
ca ted  by t h e  granular  s t r u c t u r e  of t he  boundary l a y e r ,  occurred near t h e  base 
of t h e  model. ( T h e  arrows of f i g .  20 des igna te  t h e  approximate beginning of 
turbulence.)  
i n c i p i e n t  t u rbu len t  flow t h a t  i s  charac te r ized  by what appear t o  be vor tex  
f i laments  with t h e i r  axes somewhat a l i n e d  with t h e  flow. Laminar boundary 
l a y e r s  cannot be de t ec t ed  under these  t e s t  condi t ions and must be i n f e r r e d  
from the  absence of i nd ica t ions  of t r a n s i t i o n a l  or t u rbu len t  flow. 

M, = 7.4 and RZ = 3.7x1O6 i s  shown by the  shadowgraph p i c t u r e s  
Because of t he  l i m i t e d  s i z e  of t he  tunnel  windows, s eve ra l  p i c -  

0 

Preceding t h e  tu rbu len t  flow i s  a reg ion  of t r a n s i t i o n a l  or 

Increas ing  sur face  i n c l i n a t i o n  moved t r a n s i t i o n  forward as i n d i c a t e d  by 
the  white arrows. It i s  noteworthy that the  development of t u rbu len t  f low 
occurred a f t e r  t h e  i n f l e c t i o n  of t h e  shock and near t h e  l o c a t i o n  where t h e  
strearriiine of maximum t o t a l  p ressure  approaches t h e  edge of t he  boundary 
l a y e r .  I n  t h i s  regard,  it i s  of i n t e r e s t  t o  observe from t h e  shock-layer 
p i t o t  surveys of f i g u r e  23 the  c lose  approach of t h e  maximum t o t a l - p r e s s u r e  
s t reaml ine  with inc reas ing  incidence a t  s t a t i o n  Since t h e  
m a x i m u m  to t a l -p re s su re  s t reaml ine  i s  one of about maximum Reynolds number per  
f o o t  (see f i g .  l3), it i s  c l e a r  the e f f e c t i v e  Reynolds number w a s  increased  by 

15  
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growth of t h e  boundary l a y e r .  To i n v e s t i g a t e  t h i s  i n  more d e t a i l ,  t he  va r i a -  
t i o n  of Reynolds numbers per  f o o t  i n  the  shock layer of 15' and 30' cones f o r  
about t h e  same t e s t  condi t ions of t he  shadowgraphs have been computed from the  
i n v i s c i d  c h a r a c t e r i s t i c s  so lu t ions ;  t he  results are given i n  f i g u r e  25. Also 
shown t o  emphasize b luntness  e f f e c t s  are values  of u n i t  Reynolds numbers f o r  
sharp cones. If t h e  b lunted  15' model i s  assumed t o  have a laminar boundary- 
l a y e r  run of about 1-1/2 feet ,  i t  would appear from f i g u r e  25(a)  t h a t  t h e  su r -  
f ace  Reynolds number i s  i n s u f f i c i e n t  t o  cause tu rbu len t  flow. On the  o the r  
hand, i f  i t  i s  assumed the  e f f e c t i v e  Reynolds number i s  t h e  Reynolds number of 
t h e  maximum to t a l -p re s su re  s t reamline,  a Reynolds number of about 6x10~ i s  
est imated f o r  = 7. If t h e  s l i g h t l y  abraded model sur face  i s  considered a 
secondary f a c t o r ,  t u rbu len t  f low might be expected a t  hypersonic Mach numbers 
f o r  t h i s  Reynolds number. 

COMPARISON OF NUMERICAL A.ND EXPERIMENTfi RESULTS 

Comparisons are made of t he  experimental p re s su re  d i s t r i b u t i o n  and p i t o t -  
p ressure  t r ave r ses  wi th  the  i n v i s c i d  numerical so lu t ions .  Differences o the r  
than s c a t t e r ,  between theory and experiment a r e  i n d i c a t i v e  of viscous e f f e c t s  
s ince  t h e  s l i g h t  d i f f e rences  i n  Mach number between theory and experiment are 
unimportant. 

Pressure  Di s t r ibu t ion  

a = Oo.- A comparison of the  experimental  and t h e o r e t i c a l  pressure -- 
d i s t r i b u t i o n s  f o r  t h e  sphe r i ca l  nose i s  made i n  f i g u r e  26. 
of experimental  da t a  po in t s  w a s  obtained from j u s t  a f e w  o r i f i c e s  ( see  f i g .  26) 
by p i t ch ing  the  15' model t o  15O angle  of a t t ack .  
f o r  
x'/R > 0.74 may be subjec t  t o  a s l i g h t  e f f e c t  of crossflow. 
agreement of experiment and theory  i s  good even f o r  
i n t e r e s t  a t  a Mach number of 10 are the  plane-flow numerical so lu t ion  and the  
simpler a n a l y t i c a l  theory of re ference  14.  This theory matches pressure gra-  
d i en t s  (from modified Newtonian theory)  over the  forward p a r t  of t he  nose with 
a Prandtl-Meyer expansion t o  p r e d i c t  p ressures  over t he  a f t  p a r t  of t he  nose. 
For the  condi t ions given, namely, M, = 10 and y = 1 . 4 ,  t h e  simple method 
c lose ly  p red ic t s  t he  more accura te  axisymmetric numerical so lu t ion  but  s i g n i f -  
i c a n t l y  underestimates the  plane-flow so lu t ion .  The poor agreement with the  
plane-flow so lu t ion  i s  bel ieved due mainly t o  the  i n a b i l i t y  of modified 
Newtonian theory t o  accu ra t e ly  p r e d i c t  plane-flow pressure  d i s t r i b u t i o n  and 
pressure  grad ien ts  over the  forward p a r t  of t he  nose where the  matching of 
Prandtl-Meyer and Newtonian pressure  grad ien ts  were made. 

The l a r g e  number 

Therefore, only the  da t a  
x'/R < 0.74 can be l e g i t i m a t e l y  compared with theory; the  da t a  f o r  

I n  general ,  t he  
Shown f o r  x'/R > 0.74. 

Pressure d i s t r i b u t i o n s  f o r  conical  sur faces  p red ic t ed  by numerical theory 
are compared with experiment i n  f i g u r e  27. Previously unpublished da ta  
obtained i n  the  Ames10- b y l 4 - I n c h  Wind Tunnel a t  a Mach number of about 5 a r e  
a l s o  shown. Although, i n  general ,  the  agreement of theory and experiment i s  
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good, better agreement with theory is indicated for data obtained with the 15' 
model than with the 30° model. In general, viscous effects caused a slight 
increase in pressure coefficient as expected. 

a > Oo. -  Accurate inviscid solutions of blunted-cone flows at large 
angles of attack cannot be obtained, at present, by either analytical or 
numerical theory. A possible approach to the problem of large angles of 
attack is to consider the pressure distribution to depend solely on surface 
inclination. This method, which is essentially an extension of the tangent- 
cone approximation, specifies the same pressure distribution for a given ray 
of a blunted cone at angle of attack as that of another blunted cone of larger 
cone angle at 0' angle of attack but whose rays have the same incidence to the 
free stream. On this basis, experimental data of blunted 15' and 30' cones at 
angle of attack are compared with the numerical solutions in figure 28 for 
rays lying in the vertical plane of symmetry. For a valid comparison, it is 
essential to transform the body axial positions of the orifices of the models 
to new equivalent positions in the wind-axis system of the numerical solutions. 
This transformation was previously derived in reference 12 and is given by 
equation (13) 

x - X'/R f (sin a/cos w) + 
R cos a t- sin a tan w 
- _  .. - 

The positive sign of the numerator applies for leeward rays and the negative 
sign for windward rays. The angle, w, is positive if the inclination is 
clockwise to the wind axis and negative if counterclockwise. As shown in 
figure 28, the agreement of the data with the numerical solutions is surpris- 
ingly good for both models. At low angles of attack, the agreement is about 
as good as the more rigorous linearized numerical solution presented in the 
comparisons made in reference 10. Areas of relatively poor agreement are the 
greater overshoot of data of the 15' model windward ray and the slightly 
greater pressures of the 30' model leeward ray when at angle of attack. 

Pitot Traverses of the Shock Layer 

Theoretical pitot traverses of the shock layer at x/R = 3.59 and 16.67 
are compared with the experimental traverses of the 15' model in figure 29 for 
an angle of attack of 0'. Also shown is the sharp-cone (conical theory) solu- 
tion based on the same distance to the shock. At x/R = 3.59, the agreement 
of theory with experiment is excellent, and the effect of the thin boundary 
layer on the experimental data was insignificant. While agreement of theory 
with experiment at x/R = 16.67 was not as good as the more forward station, 
the experimental and theoretical pitot profiles are quite similar. In par- 
ticular, the distance to the shock and the type of distribution of pitot pres- 
sure in the entropy layer are in close agreement indicating that boundary-layer 
effects were generally small. The differences shown in maximum pitot pressure 
at x/R = 16.67 may be partly a viscous effect due to shearing within the 
shock layer. Of interest is the thinning of the entropy layer that occurred 
between 
conical flow at 

x/R = 3.59 and 16.67 and the approach of theory and experiment to 
x/R = 16.67. 

In 



CONCLUDING REMARKS 

Results of an experimental and theoretical investigation of the pressure 
distribution and shock-layer properties of spherically blunted cones have been 
presented. The inviscid theoretical solutions demonstrate the unique Zharac- 
teristics of blunted-cone flows. The more pertinent features are an over- 
expansion of surface pressure below the sharp-cone value and an inflectlon of 
the shock. 
which results in a streamline of maximum total pressure and unit Reynolds nkq- 
ber within the shock layer. 
experimental data of l5O and 30' blunted cones having bluntness ratios of 6.0 
and 5.45, respectively. 
stream of the nose brings the maximum total-pressure streamline in close prox- 
imity to the blunted-cone surface. This effect is accentuated by increasing 
inclination of windward surfaces. 

Associated with the shock inflection is a minimum shock angle 

These theoretical results were borne out by 

Thinning of the entropy layer at a distance down- 

A preliminary investigation indicated the shock inflection m y  be a fac- 
tor in the development of turbulent flow by increasing the effective Reynolds 
number at the edge of the boundary layer. It was observed that increasing the 
angle of attack of the 15' blunted-cone model moved both the inflection of the 
shock and transition of the flow towards the nose on windward surfaces. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., May 19, 1965 
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APPENDIX A 

DERIVATION OF THE LOCAL TOTAL-PRESSURF: GRADIENT 

AT THE SURFACE OF A BLUNTED AXISYMMETRIC BODY 

An equation is derived for the local total-pressure gradient at the 
surface of a blunted body. 
ysis of the flow that has passed through the normal-shock part of the bow wave. 
Sketch ( e )  illustrates the pertinent geometrical features of the analysis and 

The derivation is based on a one-dimensional anal- 

I 

Station b& ‘6 
Sketch ( e )  

shows a streamtube adjacent to the body surface. The one-dimensional analysis 
is applied to the flow within this streamtube as r, and& + 0. For con- 
venience, the origin of the rectangular coordinates has been selected on the 
center line at the shock. Since total pressure is constant along a streamline 
behind the shock, the local total pressure can be expressed as a function of 
shock angle by a Taylor series expansion 

It is necessary to retain the term (l/2)(d2pt2/de2)Ae2 

shown later, dpt2/de vanishes as A0 + 0 and 8 + n/2 .  

because, as will be 

At a large axial distance from the nose, station ( 3 ) ,  the total pressure, 
to first order, varies linearly with distance from the body surface; therefore, 



Substituting equation (A2) in equation (Al) gives (since (dpt /de) = 0) 2 e = ~ / 2  
in the limit 7 + 0 

From streamtube geometry it is apparent that 

where by continuity 

and 

Solving equations ( A 4 ) ,  ( A 5 ) ,  and ( A 6 )  for ae2/7 gives 

and substituting equation (A7)  in equation ( A 3 )  gives 

The derivative d2pt/de2 is evaluated from oblique-shock equations. Because 
of the complexity of obtaining this second derivative directly, it is con- 
venient to introduce entropy as an intermediate variable. 
immediately behind the shock 

Therefore, 
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Y r  1 1  

where 

The p e r t i n e n t  de r iva t ives  a r e  

Qt2 dpt2 d(As/Ro) - - -  
de d(As/R,) de 

and by the  chain r u l e  

A l s o ,  from equation (A9) 

from which 

and the re fo re  

21 



Evaluation of Derivatives 

Differentiating equation ( A l O )  gives 

d(As/Ro) - 27 [ 2% sin 8 Cos e + (y-l)c sin 13 cos 13 -e] ( ~ 6 )  
- 2718 sin2 e - (7-1) ( y - l ) c  sin2 e + 2 sin I3 

W 
de 

and 

The derivative as a function of shock angle can be evaluated by 

substituting equations (Ag) , ( ~ 6 )  , and (Al7) in equation (Al5). Of impor- 
tance to the present analysis, however, is the value of 

8 + n/2. 

therefore, from equation (All) (dpt2/d8)e=a,2 = 0 

(see eq. (A3)). From equation ( A l 7 )  

d2pt2/dG2 

d2pt2/de2 when 

For this case, equation (Al6) gives [d(~ls/%)/dB],=~/~ = 0 and, 

as previously specified 

and from equation (Ag) 

The second derivative, ( d2pt/d@2)e=n,2 , is given by substituting equations 
(US) and (Alg) in equation (Al2) from which 
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1 

I 
which when substituted in equation (A8) gives the total-pressure gradient at 
the surface of a blunted body. f 

In order to make comparisons of the total-pressure gradients by equation 
(As) with those from the numerical method of characteristics, it is convenient 
to have equation (A8) in dimensionless form. 
together with equation (A22)  gives the total-pressure gradient at the surface 
of a blunted body as a function of free-stream conditions, local Mach number, 
and blunted-body geometry. 

The final result (eq. (A21)) 

( Y 4 <  + 2 

= 2 y e  - ( y - 1 )  

An expression similar to equation (A21)  was derived in reference 1.7 for 
entropy gradient rather than total-pressure gradient by a somewhat different 
approach. 
formation from entropy gradient to total-pressure gradient is required; this 
transformation is 

To compare results from reference 17 with equation (A21), a trans- 

The results from reference 17 in the nomenclature of this appendix when 
transformed to total-pressure gradient become 

M 

(A241 

Both methods (eqs. (El) and (A24)) give the same form for the solution of 
total-pressure gradient but appear to differ in their dependence on 
and y .  However, it can be shown they are the same, but the proof is tedious 
and will not be given. 

%, M, 
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Note : All dimensions in inches 

c 1 = 19.52 - 1  

(a) 15' blunted-cone model, rb/R = 6. 

i - a! 0 

0 

~- 1 - .75 

Orifice locations 

15" rr 
x'/ R 
0 

0.094 
,357 
.74 I 

1.707 
2.673 
4.605 
6.537 
8.466 
0.40 I 
2.333 
4.265 
6. I97 
8.121 

del 
€1 R 
0 

0.436 
.873 

1.310 
2.3 I O  
3.3 IO 
5.3 10 
7.3 I O  
9.3 I O  
I .3lO 
3.310 
5.3 I O  
7.310 
9.3 IO  

30" 
x'/R 
0 

0.060 
.234 
500 
.933 

I .799 
2.665 
3.53 I 
4.399 
5.265 
6. I30  
7.000 
7.860 
8.430 

10de1 

0 
0.349 

.698 
1.047 
I .547 
2.547 
3.547 
4.547 
5.547 
6.547 
7.547 
8.547 
9.547 
10.247 

€ /R 

E T  x ' /R-( l -~ . .?8)  
R 2  cos8 
- = -  

(b) 30' blunted-cone model, rb/R = 5.45. 

Figure 2.- Dimensions and orifice locations for the test models. 
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(a) 30' pressure-distribution model. 

A-32127-24 

30' pressure-dis tribution model. 

A-32127-26 

(b) 15' pressure-distribution model. 
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Figure 3.- Mode 

A-32127-11 

, )  Movable probes installed on 15' model. 

,ls installed in the 3.5-Foot Hypersonic Wind Tunnel. 
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0 Leeward surface;  w = 10 , a = 5’. 

Figure 24.-  E f f e c t  of sur face  incidence on boundary-layer t r a n s i t i o n  on a 
b lunted  cone; % = 7.4, Re* = 3.7X106, 6 = 15’. 
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